group of rational numbers as a Sum of

SQUARES $\left(Q^{+2}\right)$

Vinay Vijay Dukale,Assistant ProfessorDepartment Of Mathematics, Nirmala Memorial
Foundation College of Commerce and Science

Abstract

: Let \mathbf{Q}^{+2} denotes the set of non-negative rational numbers which can be express as sum of square of two rational. In this paper we will prove that \mathbf{Q}^{+2} is a group over multiplication.

\section*{Definition:}

Let Q denotes the set of rational numbers. Then \mathbf{Q}^{+2} denotes the set of nonnegative rational numbers. i.e $\mathbf{Q}^{+2}=\left\{n \in Q \mid n=a^{2}+b^{2}\right.$ for some $\left.a, b \in Q\right\}$.

Since $3^{2}+4^{2}=5^{2} \rightarrow 5 \in \mathbf{Q}^{+2} \rightarrow \mathbf{Q}^{+2} \neq \phi$

Theorem No. 01:

Let $\mathrm{G}=\left(\mathbf{Q}^{+}, \cdot\right)$, be a set then G is abelian group.

Proof:

I) Closure property:

Let $\mathrm{n}, \mathrm{m} \in \mathbf{Q}^{+2}$
$\therefore \exists \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{Q}$ such that $\mathrm{n}=\mathrm{a}^{2}+\mathrm{b}^{2} \& \mathrm{~m}=\mathrm{c}^{2}+\mathrm{d}^{2}$
Consider,
$\mathrm{n} \cdot \mathrm{m}=\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)\left(\mathrm{c}^{2}+\mathrm{d}^{2}\right)=\mathrm{a}^{2} \mathrm{c}^{2}+\mathrm{a}^{2} \mathrm{~d}^{2}+\mathrm{b}^{2} \mathrm{c}^{2}+\mathrm{b}^{2} \mathrm{~d}^{2}$

$$
\begin{aligned}
& =a^{2} c^{2}-2 a b c d+b^{2} d^{2}+a^{2} d^{2}+2 a b c d+b^{2} c^{2} \\
& =(\mathrm{ac})^{2}-2(\mathrm{ac})(\mathrm{bd})+(\mathrm{bd})^{2}+(\mathrm{ad})^{2}+2(\mathrm{ad})(\mathrm{bc})+(\mathrm{bc})^{2} \\
& =(\mathrm{ac}-\mathrm{bd})^{2}+(\mathrm{ad}+\mathrm{bc})^{2} \in \mathrm{Q}^{+2}
\end{aligned}
$$

$\therefore \mathrm{Q}^{+2}$ is closure under multiplication, .

II) Associativity:

Multiplication for rational numbers is always associative.
Also $\mathrm{Q}^{+2} \subseteq \mathrm{Q}$.

Therefore, Q^{+2} is Assocoative under multiplication.

III) Existence of Identity:

We have for all $\mathrm{n} \in \mathrm{Q}^{+2}, \mathrm{n} \cdot 1=\mathrm{n}=1 \cdot \mathrm{n}$
Also $1=0^{2}+1^{2}, \therefore 1 \in \mathrm{Q}^{+2}$
$\therefore 1$ is identity in Q^{+2}.

IV) Existence of inverse:

Let $n(\neq 0) \in Q^{+2}$,
$\exists \mathrm{a}, \mathrm{b} \in \mathrm{Q}$ such that $\mathrm{n}=\mathrm{a}^{2}+\mathrm{b}^{2}$
Consider, $\mathrm{m}=\frac{1}{\mathrm{n}}=\frac{1}{\mathrm{a}^{2}+\mathrm{b}^{2}}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)^{2}}=\left(\frac{\mathrm{a}}{\mathrm{a}^{2}+\mathrm{b}^{2}}\right)^{2}+\left(\frac{\mathrm{b}}{\mathrm{a}^{2}+\mathrm{b}^{2}}\right)^{2} \in \mathrm{Q}^{+2}$
$\therefore \mathrm{m} \cdot \mathrm{n}=1=\mathrm{n} \cdot \mathrm{m}$
$=\therefore \exists$ multiplicative inverse for every non zero element of Q^{+2}.
Hence $G=\left(\mathbf{Q}^{+}, \cdot\right)$, is group.
Also, multiplication in rational numbers is commutative.
Therefore,
$\mathrm{G}=\left(\mathbf{Q}^{+}, \cdot\right)$, is abelian group.

Corollary No. 01:

Let $\mathrm{n}, \mathrm{m} \in \mathrm{Q}^{+2}$, then $\frac{\mathrm{n}}{\mathrm{m}} \in \mathrm{Q}^{+2}$

Proof:

Since $\mathrm{n}, \mathrm{m} \in \mathrm{Q}^{+2}$,
$\therefore \exists \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{Q}$ such that $\mathrm{n}=\mathrm{a}^{2}+\mathrm{b}^{2} \& \mathrm{~m}=\mathrm{c}^{2}+\mathrm{d}^{2}$

$$
\begin{aligned}
\therefore \frac{n}{m}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}} & =\frac{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}{\left(c^{2}+d^{2}\right)\left(c^{2}+d^{2}\right)}=\frac{(\mathrm{ac}-\mathrm{bd})^{2}+(\mathrm{ad}+\mathrm{bc})^{2}}{\left(c^{2}+d^{2}\right)^{2}} \\
& =\left(\frac{a c-b d}{c^{2}+d^{2}}\right)^{2}+\left(\frac{a d+b c}{c^{2}+d^{2}}\right)^{2} \in Q^{+2}
\end{aligned}
$$

Corollary No. 02:

Let $\mathrm{n} \in \mathrm{Q}^{+2}$ and $m \notin Q^{+2}$, then $\mathrm{n} \cdot \mathrm{m} \notin \mathrm{Q}^{+2}$

Proof:

Since $\mathrm{n} \in \mathrm{Q}^{+2}$,
$\therefore \exists \mathrm{a}, \mathrm{b} \in \mathrm{Q}$ such that $\mathrm{n}=\mathrm{a}^{2}+\mathrm{b}^{2}$
Suppose if possible that, $\mathrm{n} \cdot \mathrm{m} \in \mathrm{Q}^{+2}$.
$\therefore \exists \mathrm{c}, \mathrm{d} \in \mathrm{Q}$ such that $\mathrm{n} \cdot \mathrm{m}=\mathrm{c}^{2}+\mathrm{d}^{2}$
$\therefore m=\frac{c^{2}+d^{2}}{a^{2}+b^{2}} \in Q^{+2}, \quad$ by corollary no. 01
which is a contradiction to the given that $m \notin Q^{+2}$.
Hence proved.
Examples:
1)Check whether 13325 can be express as a sum of two squares.

Consider,
$13325=25 \times 533=25 \times 13 \times 41=\left(3^{2}+4^{2}\right)\left(2^{2}+3^{2}\right)\left(4^{2}+5^{2}\right)$
ByTheorem No. 01,
$13325 \in Q^{+2}$,
$\therefore \exists a, b \in Q$ such that $13325=a^{2}+b^{2}$
In fact,

$$
\begin{gathered}
13325=\left((6+12)^{2}+(9-8)^{2}\right)\left(4^{2}+5^{2}\right)=\left(18^{2}+1^{2}\right)\left(4^{2}+5^{2}\right) \\
=(72-5)^{2}+(90+4)^{2}=67^{2}+94^{2}
\end{gathered}
$$

REFERENCE

Sibner, Robert J. "Fermat Theorems--Simple Proofs." arXiv preprint arXiv:2109.10220 (2021).

