Kanpur Philosophers ISSN 2348-8301 International Journal of humanities, Law and Social Sciences Published biannually by New Archaeological L Genological Society Kanpur India

GROUP OF RATIONAL NUMBERS AS A SUM OF $SQUARES (Q^{+2})$

Vinay Vijay Dukale, Assistant Professor, Department Of Mathematics, Nirmala Memorial

Foundation College of Commerce and Science

ABSTRACT:

Let \mathbf{Q}^{+2} denotes the set of non-negative rational numbers which can be express as sum of square of two rational. In this paper we will prove that \mathbf{Q}^{+2} is a group over multiplication.

Definition:

Let Q denotes the set of rational numbers. Then \mathbf{Q}^{+2} denotes the set of nonnegative rational numbers. i.e $\mathbf{Q}^{+2} = \{n \in Q | n = a^2 + b^2 \text{ for some } a, b \in Q\}.$

Since $3^2 + 4^2 = 5^2 \rightarrow 5 \in \mathbf{Q^{+2}} \rightarrow \mathbf{Q^{+2}} \neq \mathbf{\varphi}$

Theorem No. 01:

Let $G = (\mathbf{Q}^+, \cdot)$, be a set then G is abelian group.

Proof:

I) Closure property:

Let n, m $\in \mathbf{Q}^{+2}$

 $\therefore \exists a, b, c, d \in Q$ such that $n = a^2 + b^2 \& m = c^2 + d^2$

Consider,

$$n \cdot m = (a^{2} + b^{2})(c^{2} + d^{2}) = a^{2}c^{2} + a^{2}d^{2} + b^{2}c^{2} + b^{2}d^{2}$$

= $a^{2}c^{2} - 2abcd + b^{2}d^{2} + a^{2}d^{2} + 2abcd + b^{2}c^{2}$
= $(ac)^{2} - 2(ac)(bd) + (bd)^{2} + (ad)^{2} + 2(ad)(bc) + (bc)^{2}$
= $(ac - bd)^{2} + (ad + bc)^{2} \in Q^{+2}$

 $\div~Q^{+2}$ is closure under multiplication, $~\cdot~$

II) Associativity:

Multiplication for rational numbers is always associative.

Also $Q^{+2} \subseteq Q$.

Therefore, Q^{+2} is Assocoative under multiplication.

III) Existence of Identity:

We have for all $n \in Q^{+2}$, $n \cdot 1 = n = 1 \cdot n$

Also $1 = 0^2 + 1^2$, $\therefore 1 \in Q^{+2}$

 \therefore 1 is identity in Q⁺².

IV) Existence of inverse:

Let $n \neq 0 \in Q^{+2}$,

 \exists a, b \in Q such that n = a² + b²

Consider,
$$m = \frac{1}{n} = \frac{1}{a^2 + b^2} = \frac{a^2 + b^2}{(a^2 + b^2)^2} = \left(\frac{a}{a^2 + b^2}\right)^2 + \left(\frac{b}{a^2 + b^2}\right)^2 \in Q^{+2}$$

 $\therefore \mathbf{m} \cdot \mathbf{n} = 1 = \mathbf{n} \cdot \mathbf{m}$

=.: \exists multiplicative inverse for every non zero element of Q^{+2} .

Hence $G = (\mathbf{Q}^+, \cdot)$, is group.

Also, multiplication in rational numbers is commutative.

Therefore,

 $G = (\mathbf{Q}^+, \cdot)$, is abelian group.

Corollary No. 01:

Let n, m $\in Q^{+2}$, then $\frac{n}{m} \in Q^{+2}$

Proof:

Since $\mathbf{n},\mathbf{m}\in\mathbf{Q}^{+2}$,

 \therefore $\exists a, b, c, d \in Q$ such that $n = a^2 + b^2 \& m = c^2 + d^2$

$$\therefore \frac{n}{m} = \frac{a^2 + b^2}{c^2 + d^2} = \frac{(a^2 + b^2)(c^2 + d^2)}{(c^2 + d^2)(c^2 + d^2)} = \frac{(ac - bd)^2 + (ad + bc)^2}{(c^2 + d^2)^2}$$
$$= (\frac{ac - bd}{c^2 + d^2})^2 + (\frac{ad + bc}{c^2 + d^2})^2 \in Q^{+2}$$

Corollary No. 02:

Let $\mathbf{n} \in \mathbf{Q}^{+2}$ and $m \notin Q^{+2}$, then $\mathbf{n} \cdot \mathbf{m} \notin \mathbf{Q}^{+2}$

Proof:

Since $n \in Q^{+2}$, $\therefore \exists a, b \in Q$ such that $n = a^2 + b^2$ Suppose if possible that, $n \cdot m \in Q^{+2}$. $\therefore \exists c, d \in Q$ such that $n \cdot m = c^2 + d^2$ $\therefore m = \frac{c^2 + d^2}{a^2 + b^2} \in Q^{+2}$, by corollary no.01

which is a contradiction to the given that $m \notin Q^{+2}$.

Hence proved.

Examples:

1)Check whether 13325 can be express as a sum of two squares.

Consider,

 $13325 = 25 \times 533 = 25 \times 13 \times 41 = (3^2 + 4^2)(2^2 + 3^2)(4^2 + 5^2)$

By Theorem No. 01,

 $13325 \in Q^{+2}$,

 $\therefore \exists a, b \in Q \text{ such that } 13325 = a^2 + b^2$

In fact,

 $13325 = ((6 + 12)^2 + (9 - 8)^2)(4^2 + 5^2) = (18^2 + 1^2)(4^2 + 5^2)$ = (72 - 5)^2 + (90 + 4)^2 = 67^2 + 94^2

REFERENCE

Sibner, Robert J. "Fermat Theorems--Simple Proofs." arXiv preprint arXiv:2109.10220 (2021).